• +44 7897 053596
  • info@premierdissertations.com
logo pnglogo pnglogo pnglogo png
  • Home
  • Dissertation
        • Dissertation Chapter Writing
        • Dissertation Proposal
        • Dissertation Proofreading and Editing
        • Dissertation Writing Service
        • Dissertation Topic and Outline
        • Dissertation Statistical Analysis
  • Services
        • Essay Writing Service
        • Assignment Writing Service
        • Report Writing Service
        • Coursework Writing Service
        • Presentation Writing Service
        • Model Answers and Exam Notes Writing
        • Reflective Report Writing Service
        • Poster Writing Service
        • Literature Review Writing Service
  • Dissertation Topics
  • Samples
    • Dissertation Samples
    • Dissertation Proposal Samples
  • Plagiarism Checker
  • Free Dissertation Topics
  • About Us
    • Contact us
    • FAQ
    • About Us
    • Reviews
  • Get a Free Quote
  • Home
  • Dissertation
    • Dissertation Writing Service
    • Dissertation Chapter Writing
    • Dissertation Topic and Outline
    • Dissertation Proposal
    • Dissertation Statistical Analysis
    • Dissertation Proofreading and Editing
  • Services
    • Essay Writing Service
    • Assignment Writing Service
    • Report Writing Service
    • Coursework Writing Service
    • Literature Review Writing Service
    • Model Answers and Exam Notes Writing
    • Reflective Report Writing Service
    • Presentation Writing Service
    • Poster Writing Service
  • Dissertation Topics
  • Samples
    • Dissertation Samples
    • Dissertation Proposal Samples
  • Plagiarism Checker
  • Free Dissertation Topics
  • About Us
    • Contact us
    • FAQ
    • About Us
    • Reviews
  • Get a Free Quote

Hire a Writer

Get an experienced writer start working
on your paper

Check Samples

Review our samples before
placing an order

Academic Library

Learn how to draft
academic papers

Photocatalytic Treatment of Wastewater

Home  »  Report   »   Photocatalytic Treatment of Wastewater
Designing of Model Predictive Control on Shell Control Problem
Tunnel Construction Designs
February 27, 2021
Designing of Model Predictive Control on Shell Control Problem
Power Efficient Systems
February 27, 2021
February 27, 2021
Categories
  • Report
Tags
    Designing of Model Predictive Control on Shell Control Problem

    Photocatalytic Treatment of Wastewater

    A literature review on Advanced Oxidation Processes

    Introduction

    Since the last many decades, catalysts are being used in order to accelerate the reaction process. The catalysts shift the equilibrium of the reaction in process towards the product side without being actually consumed in the reaction (Fox, 1998). The catalyst which gets activated through photon absorption is called a photocatalyst, which will be discussed in detail in this literature review

    Photocatalyst

    A photocatalyst is a semiconducting material which has many applications in various industries, however, the prime application of this material is found in the solar energy and waste treatment methods. Much research has been conducted the past many years in the field of waste treatment and the use of semi conducting heterogeneous photocatalyst have produced fruitful results in the purification and treatment of waste waters.

    Advanced Oxidation Processes (AOPs)

    The treatment process is defined as the Advanced Oxidation Processes (AOPs) where the photocatalytic oxidation of toxic organic compounds takes place using semiconductors. The AOPs have been proven to be suitable for the treatment of extensive range of organic compounds/materials. The Isoproturon (IP) is an herbicides which is found in ground and waster waters, and it is has reported as difficult to eliminate using the standard biological waste treatment methods, however the AOP has shown promising results for its elimination (Parraa et al., 2002).

    There are various semiconductors such as oxides of zinc, iron and cadmium which can act as the semiconducting catalyst, however, Titanium Dioxide (TiO2) has been considered to be the most viable and effective due to its ability degrade/break a wide range of organic contaminants/pollutants. Furthermore, the properties of Titanium Dioxide such as low toxicity, high reactiveness, high chemical stability and lower costs make it an ideal photocatalyst (Fujishima et al., 2000). In this study, the degradation of a model dye will be studied using fixed Titanium Dioxide and Zinc Oxide catalysts.

    Methodology

    The heterogeneous photocatalytic reaction takes place with the adsorption of photon. Semiconductor such as Zinc Oxide or Titanium Dioxide is exposed to energy greater than of a photon  which consequently results in initialization of excitation stage, where the electron movement takes place between the valence band and the conduction band. This movement results in electron promotion in the conduction band (eCB-), creating a powerful reducing agent, and a positive-hole formation in the valence band (hVB+), creating a powerful oxidizing agent (Boroski et al., 2009). The oxidizing (hVB+) is able to react with the organic materials found in the waste waters and successful oxidization of these materials results in the formation of Carbon dioxide and water. The hVB+ can also react with the water to produce hydroxyl radicals (OH), which can also help in oxidizing the organic compounds in water. The following equations presents the chemical reaction processes;

    ZnO + hv à eCB- + hVB+        (Equation-1)

    And,

    hVB+ + R à Intermediates à C02 + H2O  (Equation-2)

    And also,

    H2O + hVB+ à OH- + H+         (Equation-3)

    Which consequently gives,

    OH- + R à Intermediates à C02 + H2O   (Equation-4)

    Where R is represented as an organic compound.

    The presence of dissolved oxygen in water to be processed is also of critical importance as it assure continues photocatalytic degradation of the organic compounds. The oxygen present is reduced constantly by the eCB- , which neutralized the effect of oxidation of organic materials and therefore avoids electron accumulation/recombination process on ZnO/ TiO2. The following explains this process;

    eCB- + O2 à O2-            (Equation-5)

    The radiation source to be used for the photocatalysis can include the use of sunlight and artificial Ultra Violet (UV) radiation. For experimentation purposes, the UV lamps of mercury are most commonly is the most commonly used source of photocatalysis radiation.

    Photocatalytic reactors

    The classification and selection of the photocatalytic reactor depends upon the state of the photocatalyst. The photocatalyst can be deployed in the form suspended and/or attached, and the design variation can depend on various aspects of waste water. The reactors can be designed to use the solar radiation or UV radiation (Lasa et al., 2005).  Solar radiation reactors are best utilized for photoxodation of organic compounds in water, however the graphical variation of sunlight has limited its usage.

    Among the most commonly used photocatalytic reactors, slurry reactors and immobilized reactors are commonly used. The slurry reactors are the most common/basic reactor design used for water waste treatment. The slurry type reactors are designed to utilize the maximum photocatalytic area, and therefore the photocatalytic activity is maximum which is one of the most important aspect in the design and operation of the treatment unit/process (Chong et al., 2010). The draw back of using this system is that the micro level photocatalyst used (such as titanium dioxide) during the process has to be separated from the treated water, which eventually complicates the design and increases the overall cost. Various filtration systems and settling tank designs have been proposed in the recent research articles to overcome this draw back and optimize this process.

    Influencing factors

    The factors that can have an influence on the degradation process of the organic compounds in the water include;

    Catalyst Loading: The catalyst loading is one of the most important aspects of photocatalytic reaction rate. The greater the amount of the semi conductor used, the greater would be the rate of reaction, until the saturation point is reached. Much research has been conducted to analyze the effect of loading on the efficiency of the process (Umar and Aziz, 2013)

    Solution pH: The pH of the solution is another critical factor in the waste treatment process. Many research articles have indicated that the pH of the solution has an effect on the catalytic performance of the semi conductors used in the process, such has the charge of the particles, size of aggregates, and the positioning of the valance band can be influence through the pH. Therefore it is absolutely vital to monitor the pH of the solution at all times

    Other factors: Other factors such as photocatalyst structure and/or size, temperature of reaction, type and characteristics of the pollutants and the inorganic ion concentrations can also an influence on the photocatalytic treatment process of the waste water

    Conclusion

    The treatment of the organic pollutants through the use of photocatalytic degradation is one of the most viable and promising technology as it works upon degradation rather than transformation of the pollutants. The process is being used on a small scale used and it has the capacity to remove an extensive range of organic pollutants. Much research has been conducted to utilize semi conductors as photocatalyst for waste treatment processes, however the operational limitation are yet to be addressed. There is an opportunity of further research to discover optimized process conditions and design the suitable reactors which could enhance operational performance in the real water matrix, and application of this technology on wide scale.

    References

    Boroski, M., Rodrigues, A.C., Garcia, J.C., Sampaio, L.S., Nozaki, J., and Hioka, N., (2009). Combined Electrocoagulation and TiO2 Photoassisted Treatment Applied to Wastewater Effluents from Pharmaceutical and Cosmetic Industries. Journal of Hazardous Materials (162) 448–454. Available online at: <http://www.sciencedirect.com/> [Retrieved on 08 November 2013].

    Chong, M.N., Jin, B., Chow, C.W.K. and Saint, C., (2010). Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Resources (44) 2997-3027.

    Fox M., (1998). Photocatalytic Oxidation of Organic Substances. In: Kluwer (ed.) Photocatalysis and Environment: Trends and Applications. New York Academic Publishers:pp. 445–467.

    Fujishima, A., Rao, T.N. and Tryk, D.A., (2000). Titanium Dioxide Photocatalysis. Journal of Photochemistry and Photobiology C Photochemistry Reviews (1) 1-21. Available online at: <http://www.sciencedirect.com/> [Retrieved on 08 November 2013].

    Gaya, U.I. and Abdullah, A.H., (2008). Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems. Journal of Photochemistry and Photobiology C Photochemistry Reviews

    Lasa, H., Serrano, B. and Salaices, M., (2005). Photocatalytic Reaction Engineering. Springer Science: USA

    Parraa, S., Malatob, S. and Pulgarin, C., (2002). New integrated photocatalytic-biological flow system using supported TiO2 and fixed bacteria for the mineralization of Isoproturon. Applied Catalysis B: Environmental 36 (2002) 131–144. Available online at: <http://cooperation.epfl.ch/webdav/site/cooperation/shared/publications/parra-malato-pulgarin_photocatalytic-biological.pdf> [Retrieved on 10 November 2013].

    Umar, M.  and Aziz, H.A., (2013). Photocatalytic Degradation of Organic Pollutants in Water. Intech Open Mind Open Science, Chapter 8, pp.  195 – 203. Available online at: <http://cdn.intechopen.com/pdfs/42060/InTech-Photocatalytic_degradation_of_organic_pollutants_in_water.pdf> [Retrieved on 09 November 2013]

    A literature review on Advanced Oxidation Processes

    Share
    0
    admin
    admin

    Related posts

    Designing of Model Predictive Control on Shell Control Problem
    February 27, 2021

    Transport, Sustainability and Visions CROSS CUTTING EXERCISE; A PROSPECTIVE VIEW


    Read more
    Designing of Model Predictive Control on Shell Control Problem
    February 27, 2021

    Application of Lean Tools & Techniques in Cigarettes Production – A Literature Review


    Read more
    Designing of Model Predictive Control on Shell Control Problem
    February 27, 2021

    Discharge over a Broad-Crested Weir An Experimental Study


    Read more

    Comments are closed.

    About Us

    Supporting students since 2010, the team at Premierdissertations.com is arguably the UK’s most trusted and safe academic writing organization.

    +44 7897 053596

    160 Kemp House, City Road, London EC1V 2NX

    Our Services

    Full Dissertation Writing
    Dissertation Proofreading and Editing
    Dissertation Chapter Writing
    Dissertation Topic and Outline
    Dissertation Proposal
    Dissertation Statistical Analysis
    Essay Writing Service
    Assignmet Writig Service

    Important Links

    About Us
    Contact Us
    Cookies Policy
    Fair Use Ploicy
    Privacy Policy
    Faqs
    Write a Review
    Terms and Conditions

    © 2021 Premier Dissertation. All Rights Reserved. Premier Dissertation
    • +44 7897 053596
    • info@premierdissertations.com