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Übersicht

Rassenbedingte Verzerrungen in Modellen der künstlichen Intelligenz (KI) für die Rönt-

gendiagnostik stellen ein erhebliches Risiko für die Gleichbehandlung im Gesundheitswesen

dar, da diese Modelle bei bestimmten demografischen Gruppen schlecht abschneiden kön-

nen, was zu möglichen Fehldiagnosen führt. Diese Arbeit reproduziert das Training eines

Krankheitsklassifikators und zeigt, dass Ethnie immer noch genau aus der Einbettung des

Modells vorhergesagt werden kann - obwohl das Modell nicht explizit dafür trainiert wurde

und Ethnie kein relevantes Merkmal für die Krankheitsvorhersage ist. Dieses Ergebnis

deutet darauf hin, dass es eine demografische Abkürzung geben könnte, bei der sich die

Modelle auf falsche, nicht-klinische, mit der Ethnie korrelierende Hinweise stützen können.

Um dieses Problem anzugehen, schlagen wir eine Reihe von Vorverarbeitungsmethoden

vor, die darauf abzielen, rassistische Verzerrungen abzuschwächen. Dazu gehören die Mask-

ierung der Lunge, um die Aufmerksamkeit des Modells auf klinisch relevante Regionen zu

beschränken, und die kontrastbegrenzte adaptive Histogramm-Entzerrung (CLAHE), um

den lokalen Kontrast zu erhöhen und die Sichtbarkeit der Merkmale zu verbessern. Diese

Ansätze zielen darauf ab, nicht-klinische Hinweise zu unterdrücken, die möglicherweise

rassistische Informationen kodieren, und gleichzeitig die Gesamtleistung des Modells zu er-

halten oder sogar zu verbessern. Die Ergebnisse tragen zur Entwicklung robuster, gerechter

KI-gesteuerter CXR-Diagnosesysteme bei und bieten praktische Einblicke in Strategien zur

Abschwächung von Verzerrungen in der KI für medizinische Bildgebung.

Abstract

Racial bias in artificial intelligence (AI) models for chest X-ray (CXR) diagnostics pose

significant risks to healthcare equity, as these models can perform poorly across certain

demographic groups, leading to potential misdiagnoses. This thesis reproduces the training

of a disease classifier and demonstrates that race can still be accurately predicted from

the model’s embedding—even though the model was not explicitly trained to do so, and

race is not a relevant feature for disease prediction. This finding suggests there might be

presence of a demographic shortcut, where models may rely on spurious, non-clinical cues

correlated with race. To address this issue, we propose a set of preprocessing methods aimed

at mitigating racial bias. These include lung masking to restrict the model’s attention

to clinically relevant regions, and Contrast Limited Adaptive Histogram Equalization

(CLAHE) to enhance local contrast and improve feature visibility. These approaches aim

to suppress non-clinical cues that may encode racial information while preserving—or even
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enhancing—overall model performance. The findings contribute to the development of

robust, equitable AI-driven CXR diagnostic systems and offer practical insights into bias

mitigation strategies in medical imaging AI.
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Chapter 1

Introduction

1.1 Motivation and Context

The integration of artificial intelligence into medical imaging holds transformative promise,

particularly in automating diagnostics and improving clinical efficiency and decision making.

However, the deployment of these systems in real-world healthcare settings has revealed

critical concerns about their fairness and reliability across diverse patient populations. One

of the most alarming findings in recent research of gichoya AI recognition of patient race [7]

is the presence of racial bias in AI models trained on chest X-ray (CXR) data. These models

have been shown to infer race from medical images—despite race being imperceptible to

human radiologists—and exhibit unequal diagnostic performance across racial and ethnic

groups [7, 20]. Such disparities threaten to reinforce existing healthcare inequities and

undermine the trust and safety of AI in clinical practice.

The motivation behind this thesis arises from the urgent need to address these biases

not merely as a technical challenge but as a matter of healthcare ethics and equity. While

algorithm-level solutions such as fairness-aware learning, adversarial debiasing and data

augmentation have been explored [yan24][21], they often lack robustness when applied

across different clinical environments[14]. This highlights the need for a more fundamental,

data-centric approach that addresses bias at the source—by controlling what the model

learns from during training.

This research is situated in the broader context of advancing fair and generalizable

medical AI. It proposes a targeted preprocessing strategy for CXR images that limits the

influence of non-clinical features associated with demographic bias. By combining anatomical

region masking, image normalization, and adaptive histogram equalization techniques like

1
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2 CHAPTER 1. INTRODUCTION

CLAHE [18], the goal is to shift model attention toward clinically meaningful patterns while

minimizing confounding demographic bias factors. This work contributes to the growing

field of ethical AI in medicine by exploring practical, scalable solutions that enhance both

performance and fairness in diagnostic systems.

1.2 Problem Statement

Despite the promising advancements in AI-based diagnostic tools for chest X-rays (CXR),

there remains a critical challenge: these models often learn to make predictions based

on non-clinical, demographically linked signals rather than actual pathological features.

This problem, known as shortcut learning, enables models to rely on racial or institutional

artifacts—such as differences in pixel intensity, image framing, or site-specific markers—as

proxies for disease, instead of focusing on medically meaningful areas of the image.

Studies have shown that CXR models can accurately infer patient race, despite race

being a non-visual characteristic [7], which raises serious concerns about fairness and model

generalization. When a model internalizes race as a shortcut during training, its predictions

risk being biased, especially toward underrepresented racial groups [20]. This has been

linked to underdiagnosis and diagnostic disparities, particularly in minority populations,

potentially leading to harmful clinical outcomes.

This thesis addresses the specific problem of racial encoding shortcut learning in chest

X-ray models by proposing a preprocessing-based bias mitigation methods. Instead of

modifying model architecture or training objectives, the approach focuses on data-level

interventions—such as anatomical masking, and CLAHE-based contrast adjustment—to

suppress non-clinical cues and enforce attention on relevant anatomical regions. By doing

so, the work aims to reduce racial bias in model predictions and improve fairness without

sacrificing diagnostic performance.

1.3 Research Objectives and Hypotheses

1.3.1 Bias definition

Racial/Ethnic Encoding Bias: This refers to the unintended encoding or reflection of racial

or ethnic information in model representations or predictions, even when such information

is not explicitly provided as input.
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1.3. RESEARCH OBJECTIVES AND HYPOTHESES 3

Diagnostic Accuracy Bias: This occurs when the model exhibits different levels of diagnostic

performance (e.g., AUROC) across demographic groups (e.g., by race).

1.3.2 Research Questions

The research seeks to answer the following questions:

(1) Can preprocessing techniques reduce Racial/Ethnic Encoding bias in AI-driven chest

X-ray disease diagnosis?

(2) Do models trained with such preprocessing-based methods improve fairness in diag-

nostic accuracy bias without significant difference in overall performance?

1.3.3 Hypothesis

For this thesis, following hypotheses are proposed:

• H1: Preprocessing methods can reduce the ability of models to detect race-related

shortcuts, thereby mitigating Racial/Ethnic Encoding bias

• H2: Models trained with such preprocessing-based bias mitigation techniques will

show improved fairness in diagnostic accuracy bias without significant loss in overall

performance, or improve overall performance

The structure of this thesis is organized as follows:

This thesis is organized into five chapters. Chapter 2 presents a comprehensive literature

review, examining prior studies that expose the presence of racial and demographic bias

in AI models for chest X-ray (CXR) diagnosis and their proposed solutions. Chapter 3

outlines the methodology, describing the datasets used, the design of preprocessing strategies

aimed at bias mitigation, as well as the deep learning architectures and experimental setup.

Chapter 4 presents the results and discussion, comparing model performance and fairness

metrics before and after applying bias mitigation techniques, and analyzing generalization

across racial and ethnic subgroups. Chapter 5 concludes the thesis with a summary of key

findings and contributions, discusses the limitations of the current approach, and outlines

potential directions for future work to develop more equitable AI systems in medical imaging
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Chapter 2

Literature Review

In recent years, the integration of artificial intelligence (AI) into medical imaging has shown

significant promise in enhancing diagnostic accuracy, efficiency, and accessibility. However,

alongside this progress, growing concerns have emerged regarding the fairness, transparency,

and generalizability of AI models, particularly in relation to demographic biases. As chest

X-ray datasets play a foundational role in training and evaluating diagnostic algorithms, it

has become increasingly evident that systemic disparities in data representation and labeling

practices can inadvertently lead to unequal performance across patient subgroups[20] [7].

Among these concerns, racial and ethnic bias has gained particular attention, raising

critical questions about how AI systems interpret underlying patient characteristics and

whether such systems might propagate or even amplify existing healthcare inequalities.

This literature review explores the current state of research on demographic bias in medical

imaging, with a particular focus on racial disparities in chest X-ray–based diagnostic models.

2.1 Chest X-ray Imaging

Chest X-ray (CXR) imaging is one of the most commonly used and cost-effective diag-

nostic tools in clinical practice for detecting thoracic abnormalities such as pneumonia,

Pneumothorax, lung lesions, and cardiomegaly. Its non-invasive nature, low radiation

exposure, and rapid acquisition make it an essential modality in routine medical diagnostics,

particularly in resource-constrained settings. However, interpreting chest X-rays can be

complex, requiring significant expertise due to overlapping anatomical structures and subtle

pathological changes.

5
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6 CHAPTER 2. LITERATURE REVIEW

In recent years, the advent of deep learning has transformed the landscape of medical

image analysis, with numerous studies demonstrating the potential of convolutional neural

networks (CNNs) to perform at or even above the level of radiologists in certain diagnostic

tasks. For example, Rajpurkar et al. introduced CheXNet, a 121-layer DenseNet model

trained on the NIH ChestX-ray14 dataset, which achieved radiologist-level performance

in pneumonia detection [17]. Following this, large-scale public datasets such as MIMIC-

CXR [10] and CheXpert [9] enabled the development and benchmarking of multi-label

classification models capable of identifying a wide range of chest diseases from frontal CXR

images.

Despite these advances, concerns have emerged around the reliability and fairness

of such models in real-world applications. The variability in imaging protocols, device

manufacturers, patient positioning, and demographic factors can affect model performance,

often leading to generalization issues when applied to unseen populations or institutions

[12]. Additionally, label quality remains a challenge, as many datasets rely on natural

language processing (NLP) [10][9]to extract findings from radiology reports, introducing

potential noise and ambiguity in the ground truth.

Overall, while CXR-based AI models have shown significant promise in automating

disease detection and triage, their real-world deployment necessitates careful evaluation for

robustness, interpretability, and demographic fairness.

2.2 Bias and Fairness in AI-based CXR diagnosis

In the context of medical AI, bias refers to systematic differences in model performance across

subgroups defined by demographic attributes such as race, gender, age, or socioeconomic

status. Fairness refers to the goal of minimizing or eliminating these disparities to ensure

equitable healthcare outcomes for all groups.

2.2.1 Sources of Bias

Bias in medical AI systems can originate from several sources:

Dataset Imbalance: Many medical imaging datasets are not demographically represen-

tative. For instance, widely used datasets like NIH ChestX-ray14 or CheXpert are

predominantly composed of patients from specific racial or geographic groups. This

imbalance can lead to models that perform well on majority groups but poorly on

underrepresented populations [20]
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2.2. BIAS AND FAIRNESS IN AI-BASED CXR DIAGNOSIS 7

Label Noise and Subjectivity: Systematic label noise, or label bias, differs crucially

from random label noise in that—if not addressed properly—it results in a biased

decision boundary being learned [16]. Diagnostic labels in public datasets are often

extracted using natural language processing (NLP) from radiology reports [10][9],

which can introduce inaccuracies. Moreover, subjective interpretations by radiologists

can be inconsistent across demographic groups [9]

Sample Selection Bias: Selection biases occur when the dataset used for training does

not accurately represent the true target population. Intersectional effects—such as

age distribution within gender groups—can confound subgroup performance analysis.

A poor model performance in elderly patients may be misinterpreted as sex bias if

one sex is overrepresented among older individuals [16]

Shortcut Learning: Deep models often rely on easily learnable but non-causal patterns

— a phenomenon known as shortcut learning [6]. In medical imaging, this can mean

models may exploit spurious correlations (e.g., hospital markers, image contrast) that

are inadvertently tied to demographic features, rather than truly learning disease-

relevant signals [4]

2.2.2 AI recognition of patient race in CXR Images

Recent studies have demonstrated that AI models can infer a patient’s racial or ethnic

identity from medical images, such as chest radiographs, with high accuracy—even when

clinician cannot. In particular, it has been shown that deep learning models can predict

self-reported race from X-rays with an AUROC score above 0.9 across multiple modalities,

imaging vendors, and clinical tasks [7] See in the below fig 2.1. This occurs even when the

image is heavily degraded or cropped means distorted image.

According to Seyyed-Kalantari et al. [20], subgroups such as female patients, patients

under 20, Black and Hispanic individuals, and Medicaid-insured patients were dispropor-

tionately underdiagnosed by AI models trained on CXR datasets. This study shows that

false positive rate (FPR) and false negative rate (FNR) have an inverse relationship in

these populations, indicating that underserved groups are often falsely labeled as healthy,

rather than over-diagnosed. This points to a systemic issue where certain demographics are

aggressively flagged as healthy, leading to potentially harmful missed diagnoses.

A study by Burns et al. [1] explored whether the ability of AI to identify patient

race from chest X-rays is rooted not in anatomical structure but in pixel intensity dis-
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8 CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Race detection in radiology imaging [7]

tributions alone. These histograms were normalized to percent-per-image (PPI) values

and analyzed using multivariate analysis of variance (MANOVA), which rejected the null

hypothesis of no difference in distributions across racial groups (F=7.38, p<0.0001) with

95% confidence. Even under class balancing, race-specific differences persisted (F=2.02,

p<0.0001)[1]. Machine learning models trained only on grayscale intensity counts—without

any spatial or anatomical information—achieved non-trivial race classification performance,

with gradient-boosted decision trees reaching an AUROC of 77.24% and feed-forward neural

networks achieving 69.18%. Stratified analyses across factors such as BMI, age, sex, scanner

model, and acquisition settings confirmed the robustness of these findings. This study

provides strong evidence that race information is statistically embedded in the grayscale

intensity distributions of chest X-rays, even when all structural cues are removed.[1].

Another paper found that technical parameters of image acquisition and processing

— such as machine type, resolution, and view positioning — are major contributors to

this capability [12]. Importantly, Lotter et al [12] demonstrated that mitigating these

acquisition differences via a demographics-independent calibration strategy significantly
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2.2. BIAS AND FAIRNESS IN AI-BASED CXR DIAGNOSIS 9

reduces underdiagnosis bias. This suggests that part of the diagnostic disparity is not merely

due to model limitations or imbalanced data, but is rooted in the technical characteristics

of how medical images are collected and processed.

These findings imply that there are subtle, high-dimensional racial signals in medical

imaging that are learnable by AI but invisible to human clinicians. Such signals could be

incorporated into bone structure, tissue density, or other patterns at the pixel level [1].

There are important ramifications: if race can be inferred from pictures, AI models that

have been trained on clinical tasks might unintentionally come to depend on these proxies,

which would bias prognostic or diagnostic predictions. This means that race is implicitly

encoded in medical images, even when not explicitly labeled [6][7]. Such hidden use of

race can result in biased diagnostic accuracy, poorer generalization to diverse populations,

and unequal treatment recommendations. Even if overall model performance appears

acceptable, group-specific harms may persist beneath the surface. Therefore, understanding

and addressing racial encoding is critical for developing trustworthy, equitable medical

AI systems. Preprocessing methods are commonly used in fairness-focused AI model[15],

motivated by this study, we propose targeted preprocessing strategies to mitigate racial

encoding, and produce fairer diagnostic outcomes. These methods are detailed in the

following Methodology section.

2.2.3 Diagnostic Bias

Understanding diagnostic bias in CXR:

it is critical, as deep learning models may show unequal performance across demographic

groups. This bias often arises from dataset imbalances, label inaccuracies, or models relying

on spurious correlations like race encoding. Such issues can lead to misdiagnosis or reduced

accuracy for underrepresented populations.

Empirical Evidence of Diagnostic Bias:

Several studies have documented fairness gaps in widely used medical AI systems:

• Seyyed-Kalantari et al. (2021) demonstrated that chest X-ray classification models

trained on large datasets exhibited systematic underdiagnosis for Black patients across

multiple disease labels, even when overall performance metrics appeared acceptable

[20].
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10 CHAPTER 2. LITERATURE REVIEW

• Banerjee et al. (2022), in the CheXclusion study, revealed that fairness gaps persisted

across multiple datasets and tasks in multi-label chest X-ray classification, suggesting

that merely increasing dataset diversity is insufficient to eliminate diagnostic disparities

[19].

• Wang et al. (2022) found that models could maintain high diagnostic performance

while minimizing the ability to infer race, indicating that racial signal in chest X-

rays is not necessary for disease classification and may instead contribute to biased

decision-making when learned as a shortcut [21].

• Lotter et al. (2023) showed that diagnostic bias arises in models due to variation in

acquisition parameters across institutions, which can encode race-related information.

Their findings emphasized that mitigating race-related artifacts reduced underdiagnosis

bias in marginalized groups [12].

2.3 Mitigation Strategies for Bias in Medical Imaging

A variety of techniques have been proposed to mitigate these biases. These can generally

be categorized into three groups:

(1) Data Balancing and Reweighting:

Some researchers propose ensuring that datasets are demographically balanced or

applying reweighting strategies during training. While these methods can reduce

disparities in training data representation, they often do not generalize well to new

domains or test sets from other institutions [20].

(2) Fairness-Aware Learning:

Algorithmic solutions such as adversarial debiasing have also been explored. These

techniques involve training models that minimize the prediction of protected attributes

(e.g., race) while maximizing task performance. [yan24]

(3) Shortcut Mitigation via Image Preprocessing:

An emerging and promising strategy involves addressing the input space directly

by preprocessing the chest X-ray images to remove or reduce non-clinical cues that

may encode race or hospital identity. For instance, the study “Drop the shortcuts”

[21] demonstrates that basic image augmentations—like cropping out hospital tags

and randomizing brightness—can significantly reduce a model’s ability to predict
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2.3. MITIGATION STRATEGIES FOR BIAS IN MEDICAL IMAGING 11

demographic attributes from medical images. A very recent paper [2] of J. Gichoya

further suggests that DICOM acquisition parameters themselves are a major source

of encoded bias. Their study, shows that choices in windowing, LUT application, and

modality transformations significantly influence the generalizability and fairness of AI

models. Preprocessing, therefore, should consider these acquisition artifacts.

Challenges and Limitations :

(1) Poor Generalization to External Datasets:

One of the most consistent issues across bias mitigation strategies is their limited ability

to generalize beyond the training environment. Techniques such as data reweighting or

adversarial training may show improved fairness on internal validation data but often

fail to maintain performance across datasets from different hospitals or populations[23].

(2) DICOM-Specific Artifacts:

The DICOM file format introduces additional complexity. Variations in LUT (Look-

Up Table) transformations, windowing parameters, and modality presentation can all

encode site-specific or demographic biases [2]. Most public datasets convert DICOMs

to PNG without standardized LUT correction, which may preserve unwanted artifacts

that contribute to racial inference.

(3) Lack of Diverse and Transparent Datasets:

A major contributor to racial bias in chest X-ray AI models is the lack of demographic

diversity in widely used datasets such as CheXpert, and MIMIC-CXR which are

predominantly composed of White patients (about more than half set) . Underrepre-

sentation of minority groups like: Asian limits the model’s ability to generalize and

leads to disparities in diagnostic performance.

Seyyed-Kalantari et al. [20] demonstrated that models trained on imbalanced datasets

systematically underdiagnose diseases in underserved populations, particularly Black

patients. This bias persists across multiple datasets and clinical settings.
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Chapter 3

Methodology

This chapter outlines the methodology adopted to investigate racial bias in chest X-ray AI

models and improve their generalization and fairness through preprocessing techniques. It

includes a detailed description of the datasets used, preprocessing steps applied to mitigate

bias, model architecture, and the experimental setup used for evaluation.

3.1 Datasets

In this study, two large-scale publicly available chest X-ray datasets are used: CheXpert

and MIMIC-CXR. These datasets provide high-quality radiographic images along with

clinical labels, making them suitable for training and evaluating deep learning models for

disease detection.

3.1.1 CheXpert Dataset

CheXpert [9] is a labeled chest radiograph dataset developed by Stanford University,

comprising 224,316 chest X-ray images from 65,240 patients. They retrospectively collected

chest radiographic studies from Stanford Hospital, performed between October 2002 and

July 2017 in both inpatient and outpatient centers, along with their associated radiology

reports. The dataset includes both frontal and lateral views and provides labels for 14

common chest pathologies, such as pneumonia, cardiomegaly, and pleural effusion. The

images are provided in JPEG and have a resolution of 390 * 320 pixels. The labels were

extracted using a rule-based natural language processing system applied to radiology reports.

These labels include positive, negative, and uncertain categories, which reflect the

confidence or ambiguity present in clinical interpretation. CheXpert is particularly well-

13
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14 CHAPTER 3. METHODOLOGY

suited for supervised learning tasks due to its labeled structure and has been used as a

benchmark in numerous studies.

3.1.2 MIMIC Dataset

The MIMIC-CXR [10](Medical Information Mart for Intensive Care Chest X-Ray) dataset

is a large-scale chest radiograph dataset released by the MIT Lab for Computational

Physiology. It includes 377,110 images across 227,835 studies, covering 65,379 unique

patients from the Beth Israel Deaconess Medical Center between 2011 and 2016.

Original DICOM images typically around 2048×2048 pixels, though may vary depending

on equipment and acquisition settings. Each image is linked to a free-text radiology report,

which can be used for label extraction or clinical language modeling. MIMIC-CXR includes

a broad range of CXR view positions, including AP, PA, and lateral, and the dataset is

stored in DICOM format, which preserves rich metadata, including acquisition parameters

such as exposure, resolution, and scanner model.

To understand the demographic distribution within the datasets, particularly in terms

of racial composition, we examined the reported breakdown of patient race for both MIMIC

and CheXpert. As shown in Figure 3.1 [23], both datasets have a clear racial imbalance,

with the majority of chest X-ray images belonging to White patients—61.0% in MIMIC and

56.4% in CheXpert. Other racial groups, including Black (15.6%), Asian (3.1%), and Other

(20.3%) are represented in MIMIC, while CheXpert includes Asian (10.5%), Black (5.4%),

and Other (27.8%) populations. This disproportionate representation suggests a skew in the

dataset composition, which may introduce demographic bias in AI models trained on these

datasets. This observed imbalance underscores the importance of careful preprocessing and

fairness-aware evaluation to ensure equitable diagnostic performance across racial groups.

3.1.3 Data Splitting & Sampling

We use the MIMIC-CXR-JPG [10], and CheXpert [9] database. Applied same data

processing, sampling strategies, and augmentation techniques for the CheXpert and MIMIC-

CXR-JPG datasets. For the MIMIC-CXR-JPG dataset, we discard lateral recordings and

retain only frontal (AP/PA) chest X-rays. For cheXpert we only select frontal view only for

maintain consistency. we exclude the support devices’, fracture’, and pleural other’ labels,

focusing our analysis on the remaining 10 disease labels along with the No Finding’ label.
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3.1. DATASETS 15

Figure 3.1: Demographic characteristics of the datasets [23]

Following the approach of Weng et al.[22], we eliminate multiple recordings for the same

patient, retaining only one image—specifically, the one with the most annotated disease

labels—to reduce potential label bias, particularly within the ‘No Finding’ category. This

results in mimic dataset of 41,168 unique recordings. From this, we construct a test set of

1,757. The remaining data are randomly split into a training and validation set of 37,439

(95%) and 1,972 (5%) samples, respectively. We ensure that there is no patient overlap

between any of the three sets. Chexpert dataset contain 64,522 unique recordings. From

this, we construct a test set of 1,879. The remaining data are randomly split into a training

and validation set of 59,509 (95%) and 3,134 (5%) samples, respectively.1

3.1.4 CheXmask Dataset

To support lung-region-focused training for chest disease prediction, we utilize the CheXmask

dataset [5], a publicly available resource that provides high-quality lung segmentation masks

1In cases where fewer than 35 samples were available for a given race-label combination, all available

samples were included. Due to the multi-label nature of the dataset, some samples may contribute to more

than one label group.
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16 CHAPTER 3. METHODOLOGY

Table 3.1: Dataset Splitting and Sampling Strategy for CheXpert and MIMIC-CXR

Subset CheXpert MIMIC-CXR
Training Set 59,509 37,439
Validation Set 3,134 1,972
Test Set (Total) 1,879 1,757
Total Images Used 64,522 41,168

for chest X-ray images. These masks are used to generate lung-masked inputs, helping

reduce model dependence on non-relevant visual features and improving fairness across

demographic subgroups.

The CheXmask dataset aggregates a total of 657,566 anatomical lung segmentation

masks sourced from the following public chest X-ray databases:ChestX-ray8, CheXpert,

MIMIC-CXR-JPG, Padchest, VinDr-CXR. In this thesis, we specifically use the CheXpert

and MIMIC subset of CheXmask to generate lung-masked images.

The segmentation masks in CheXmask were generated using HybridGNet[5], a hybrid

architecture combining convolutional layers and vision transformers for improved anatomical

segmentation accuracy. Unlike many segmentation pipelines that lack validation, CheXmask

provides an individual Reverse Classification Accuracy (RCA) score for each segmentation,

enabling users to assess mask reliability at scale.

3.2 Model Architectures

This study undertakes a comparative analysis of several prominent neural network archi-

tectures applied to chest x-ray image to classify diseases. We primary use Densenet-121

architecture to adapt and compare results to Seyyed-Kalantari et al. [19] and Yang et

al. [23]. We also already tried other architectures: ResNet50, EfficientNetV2, ResNeXt50

and ConvNeXtTiny. This all model gave results similar while there computation power and

complexity is higher than Densenet-121.

3.2.1 Foundational Concepts

Before detailing the specific architectures evaluated, it is pertinent to introduce the core

technologies upon which they are built: Convolutional Neural Networks (CNNs).

Convolutional Neural Networks
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3.2. MODEL ARCHITECTURES 17

CNNs represent a cornerstone of modern computer vision, demonstrating exceptional

proficiency in learning hierarchical feature representations directly from grid-like data such

as images [13]. At their core, convolution operations extract spatial features through

learnable filters (kernels) that scan across the input, computing element-wise multiplications

followed by summation. This operation can be mathematically expressed as:

(f ∗ g)(p) =
∑

s+t=p

f(s)g(t) =
∑

s∈Z2

f(s)g(p − s) (3.1)

where f represents the input feature map, g denotes the kernel, and p indicates the spatial

position. This formulation enables CNNs to capture local patterns with parameter sharing

and translation equivariance—critical properties that dramatically reduce model complexity

compared to fully connected architectures while maintaining spatial relationships. The CNN

[13] architecture typically comprises several convolutional layers that progressively learn more

abstract representations, pooling layers (e.g., max-pooling) that reduce spatial dimensions

while preserving salient information, and non-linear activation functions (predominantly

ReLU) that enable modelling of complex patterns. The hierarchical structure allows

CNNs to transition from detecting simple low-level attributes (edges, textures) to complex

high-level semantic concepts as information progresses through the network.

For medical image analysis specifically, CNNs have proven invaluable due to their ability

to learn task-specific features directly from data, reducing reliance on handcrafted features

while achieving superior performance across various modalities and applications [11].

3.2.2 DenseNet 121

DenseNet-121 (Densely Connected Convolutional Network), introduced by Huang et al. in

2017 [8], is a convolutional neural network designed to encourage feature reuse, reduce the

number of parameters, and strengthen gradient flow. This architecture is well-suited for

medical imaging tasks such as chest X-ray analysis due to its efficiency and capacity to

extract rich, hierarchical features even with limited training data.

The network contains approximately 8 million parameters, which is relatively compact

compared to other deep CNN architectures such as ResNet-152, making it suitable for

efficient deployment and training. Below figure(3.2) [3] show the DenseNet-121 architecture:

Architecture Overview

DenseNet-121 consists of an initial convolutional stem followed by four densely connected

blocks, interleaved with transition layers. Each layer in a dense block receives as input the
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18 CHAPTER 3. METHODOLOGY

Figure 3.2: DenseNet 121 Model Architecture [3]

concatenation of all feature maps from preceding layers, ensuring maximum information

flow between layers.

Initial Convolution and Pooling: A 7×7 convolution with stride 2 is followed by a

3×3 max pooling operation, which reduces the spatial dimensions of the input image.

Dense Blocks and Transition Layers: The model comprises four dense blocks with 6,

12, 24, and 16 layers respectively. Between dense blocks, transition layers consisting

of 1×1 convolutions and 2×2 average pooling are used to downsample the feature

maps and reduce dimensionality.

Final Layers: The network concludes with a global average pooling layer and a fully

connected classification layer. In our case, the final layer is adapted for multi-label

classification to predict multiple thoracic pathologies.

Pre-training and Performance on ImageNet

To leverage transfer learning, DenseNet-121 is initialized with weights pre-trained

on the ImageNet-1K dataset. This initialization improves convergence and performance,

especially in medical tasks where annotated data is limited or imbalanced. On the ImageNet

benchmark, DenseNet-121 achieves: Top-1 Accuracy: 74.43% and Top-5 Accuracy: 91.27%

Page 28 of 47 - AI Writing Submission Submission ID trn:oid:::29034:104133953

Page 28 of 47 - AI Writing Submission Submission ID trn:oid:::29034:104133953



3.3. EXPERIMENTAL SETUP 19

3.2.3 HybridGNet

To further assess the impact of preprocessing techniques on model generalization and fairness,

we also experiment with HybridGNet [5], a hybrid architecture designed specifically for robust

medical image analysis. HybridGNet integrates both convolutional and transformer-based

components to capture both local spatial patterns and global contextual relationships in

medical images, making it well-suited for the challenges posed by chest X-ray interpretation

across demographically diverse populations.

HybridGNet adopts a dual-path design:

A CNN branch extracts low-level spatial features with local receptive fields, preserving

fine-grained anatomical structures. A Vision Transformer (ViT) branch captures long-range

dependencies and semantic-level global context by operating on image patches.

To enhance the focus of the disease prediction model and mitigate potential biases from

non-relevant regions, we employ lung region masking as a preprocessing step. Specifically, we

use the CheXmask[5] dataset, a publicly available resource that provides lung segmentation

masks for chest X-ray images. These masks are generated using the HybridGNet architecture,

which is designed for accurate and robust lung segmentation across diverse populations and

imaging conditions.

3.3 Experimental Setup

To ensure the reproducibility of the findings presented herein and to facilitate equitable

comparisons across the diverse architectures, design methodologies, and learning paradigms

investigated within this thesis, a standardized experimental configuration was rigorously

maintained, except where explicitly noted deviations are described. This section elucidates

the common parameters and procedures applied concerning dataset management, software

implementation, model training protocols, and quantitative evaluation.

3.3.1 Implementation Details

All architectures were implemented utilizing the PyTorch deep learning framework. Model

training and subsequent inference procedures were executed on NVIDIA A100 Graphics

Processing Units (GPUs), each provisioned with 40GB of Video Random Access Memory

(VRAM). In adherence to best practices for scientific reproducibility, deterministic behaviour
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was promoted through the utilization of fixed random seed values for the initialization of

model parameters and other stochastic elements within the training pipeline.
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Chapter 4

Results

4.1 Overview

This chapter presents the results of the baseline model and model after applying the proposed

preprocessing methods. The results are reported for both the MIMIC and CheXpert datasets,

covering diagnostic accuracy, race prediction performance, and subgroup analyzes between

racial groups.

4.2 Baseline Performance

Table 4.1: AUC of Diagnostic Classification

Datasets AUROC
Chexpert 0.98
MIMIC 0.97

Disease Race Baseline CLAHE Lung Masking

Atelectasis

ASIAN 0.787689 0.798335 0.768912

BLACK 0.752812 0.801216 0.771359

WHITE 0.812641 0.825141 0.793184

all 0.804218 0.817463 0.797078

hisp/lat/SA 0.847796 0.849899 0.865014

unknown/other 0.814840 0.812179 0.784840

21
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22 CHAPTER 4. RESULTS

Cardiomegaly

ASIAN 0.771612 0.780350 0.740738

BLACK 0.810725 0.817261 0.783868

WHITE 0.745938 0.784103 0.768001

all 0.790192 0.809998 0.786788

hisp/lat/SA 0.805169 0.823184 0.822205

unknown/other 0.822868 0.840180 0.806697

Consolidation

ASIAN 0.788968 0.810463 0.799004

BLACK 0.739722 0.756734 0.754829

WHITE 0.745310 0.753391 0.724387

all 0.753080 0.760886 0.755046

hisp/lat/SA 0.770757 0.791100 0.762556

unknown/other 0.736938 0.719010 0.754098

Edema

ASIAN 0.888496 0.908329 0.868287

BLACK 0.863204 0.884723 0.866528

WHITE 0.882616 0.879780 0.857291

all 0.869934 0.883331 0.864573

hisp/lat/SA 0.884000 0.907956 0.894418

unknown/other 0.835741 0.837889 0.835630

EnlargedCardiomediastinum

ASIAN 0.710322 0.711392 0.702166

BLACK 0.736255 0.738621 0.730171

WHITE 0.686241 0.726324 0.671807

all 0.698887 0.710464 0.687581

hisp/lat/SA 0.695120 0.689416 0.661924

unknown/other 0.661037 0.689573 0.671745

Lung Lesion

ASIAN 0.626620 0.684114 0.697438

BLACK 0.652683 0.668241 0.732363

WHITE 0.756639 0.782764 0.781842

all 0.693354 0.716842 0.737899

hisp/lat/SA 0.672559 0.687530 0.711738

unknown/other 0.789413 0.781873 0.766177

Lung Opacity

ASIAN 0.615894 0.644390 0.620307

BLACK 0.654410 0.680513 0.662752

WHITE 0.642788 0.688971 0.646917
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4.2. BASELINE PERFORMANCE 23

all 0.665758 0.688687 0.671429

hisp/lat/SA 0.724857 0.719619 0.721176

unknown/other 0.689967 0.706830 0.705668

No Finding

ASIAN 0.932819 0.942375 0.931467

BLACK 0.924429 0.940490 0.899155

WHITE 0.938398 0.934021 0.930553

all 0.927685 0.937189 0.923253

hisp/lat/SA 0.923996 0.928852 0.940336

unknown/other 0.932154 0.951614 0.927820

Pleural Effusion

ASIAN 0.900334 0.910567 0.880608

BLACK 0.886334 0.900178 0.880927

WHITE 0.886215 0.897877 0.862283

all 0.893744 0.903375 0.877512

hisp/lat/SA 0.906046 0.915652 0.900790

unknown/other 0.882434 0.889305 0.855072

Pneumonia

ASIAN 0.629036 0.687703 0.650704

BLACK 0.614542 0.629167 0.596119

WHITE 0.701209 0.710907 0.698433

all 0.649968 0.674481 0.649889

hisp/lat/SA 0.664963 0.661142 0.650145

unknown/other 0.624273 0.658430 0.633037

Pneumothorax

ASIAN 0.761512 0.828179 0.830241

BLACK 0.744919 0.782182 0.712398

WHITE 0.675510 0.768709 0.635262

all 0.748741 0.797924 0.740147

hisp/lat/SA 0.790333 0.805542 0.814700

unknown/other 0.790318 0.802392 0.740321
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Table 4.3: Summary of AUROC per Disease and Race groupBy metrics across preprocessing
methods

Race MacroAUROC MaxDiffAUROC

ASIAN 0.605703 0.118420
BLACK 0.612937 0.036115
WHITE 0.415727 0.050155
all 0.521147 0.029416
hisp/lat/SA 0.460286 0.043604
unknown/other 0.511082 0.053590

Table 4.4: Summary of AUROC per Disease and Race groupBy metrics across preprocessing
methods

Race AUROC Preprocessing

ASIAN 0.631622 Baseline
BLACK 0.629134 Baseline
WHITE 0.395759 Baseline
hisp/lat/SA 0.486633 Baseline
unknown/other 0.508472 Baseline
all 0.530324 Baseline
ASIAN 0.651955 Lung Masking
BLACK 0.616660 Lung Masking
WHITE 0.405509 Lung Masking
hisp/lat/SA 0.443029 Lung Masking
unknown/other 0.539183 Lung Masking
all 0.531267 Lung Masking
ASIAN 0.533534 CLAHE
BLACK 0.593019 CLAHE
WHITE 0.445914 CLAHE
hisp/lat/SA 0.451196 CLAHE
unknown/other 0.485593 CLAHE
all 0.501851 CLAHE
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Figure 4.1: Race detection in radiology imaging
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List of Abbreviations

AI Artificial Intelligence

CXR Chest X-ray

CLAHE Contrast Limited Adaptive Histogram Equalization

CNN Convolutional Neural Network

AUC Area Under Curve

AUROC Area Under the Receiver Operating Characteristic Curve

MIMIC-CXR Medical Information Mart for Intensive Care Chest X-Ray

AP Anteroposterior

PA Posteroanterior

DenseNet Densely Connected Convolutional Network
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